MyD88 is critically involved in immune tolerance breakdown at environmental interfaces of Foxp3-deficient mice.

نویسندگان

  • Magali Noval Rivas
  • Yi T Koh
  • Andrew Chen
  • Annie Nguyen
  • Young Ho Lee
  • Greg Lawson
  • Talal A Chatila
چکیده

Tregs expressing the transcription factor Foxp3 suppress self-reactive T cells, prevent autoimmunity, and help contain immune responses to foreign antigens, thereby limiting the potential for inadvertent tissue damage. Mutations in the FOXP3 gene result in Treg deficiency in mice and humans, which leads to the development of a multisystem autoimmune inflammatory disease. The contribution of dysregulated innate immune responses to the pathogenesis of Foxp3 deficiency disease is unknown. In this study, we examined the role of microbial signals in the pathogenesis of Foxp3 deficiency disease by studying Foxp3 mutant mice that had concurrent deficiencies in TLR signaling pathways. Global deficiency of the common TLR adaptor MyD88 offered partial protection from Foxp3 deficiency disease. Specifically, it protected from disease at the environmental interfaces of the skin, lungs, and gut. In contrast, systemic disease, in the form of unrestrained lymphoproliferation, continued unabated. The effect of MyD88 deficiency at environmental interfaces involved the disruption of chemokine gradients that recruit effector T cells and DCs, resulting in their entrapment in secondary lymphoid tissues. These results suggests that Tregs have a key role in maintaining tolerance at host-microbial interfaces by restraining tonic MyD88-dependent proinflammatory signals. Moreover, microbial factors may play a substantial role in the pathogenesis of human autoimmune disease resulting from Treg deficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of MyD88 signaling induces donor-specific kidney allograft tolerance.

Toll-like receptors (TLRs) play a fundamental role in innate immunity and provide a link between innate and adaptive responses to an allograft; however, whether the development of acute and chronic allograft rejection requires TLR signaling is unknown. Here, we studied TLR signaling in a fully MHC-mismatched, life-sustaining murine model of kidney allograft rejection. Mice deficient in the TLR ...

متن کامل

IκB(NS) protein mediates regulatory T cell development via induction of the Foxp3 transcription factor.

Forkhead box P3 positive (Foxp3(+)) regulatory T (Treg) cells suppress immune responses and regulate peripheral tolerance. Here we show that the atypical inhibitor of NFκB (IκB) IκB(NS) drives Foxp3 expression via association with the promoter and the conserved noncoding sequence 3 (CNS3) of the Foxp3 locus. Consequently, IκB(NS) deficiency leads to a substantial reduction of Foxp3(+) Treg cell...

متن کامل

Oral tolerance for delayed type hypersensitivity contribution of local and peripheral mechanisms

Oral tolerance is a physiological immune mechanism, which controls the outcome of deleterious hypersensitivity reactions to environmental antigens absorbed through the gastrointestinal tract, and maintains homeostasis. Using a mouse model of oral tolerance of delayed type hypersensitivity to contact allergens, i.e. haptens, we have examined the mechanisms involved in the induction of oral toler...

متن کامل

MyD88 signaling in dendritic cells and the intestinal epithelium controls immunity against intestinal infection with C. rodentium

MyD88-mediated signaling downstream of Toll-like receptors and the IL-1 receptor family is critically involved in the induction of protective host responses upon infections. Although it is known that MyD88-deficient mice are highly susceptible to a wide range of bacterial infections, the cell type-specific contribution of MyD88 in protecting the host against intestinal bacterial infection is on...

متن کامل

MyD88-dependent signaling drives host survival and early cytokine production during Histoplasma capsulatum infection.

The ability of the innate immune system to trigger an adaptive T cell response is critical to resolution of infection with the fungal pathogen Histoplasma capsulatum. However, the signaling pathways and cell types involved in the recognition of and response to this respiratory pathogen remain poorly defined. Here, we show that MyD88, an adaptor protein vital to multiple innate immune pathways, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 122 5  شماره 

صفحات  -

تاریخ انتشار 2012